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Scholar metadata have traditionally centered on descrip-
tive representations, which have been used as a
foundation for scholarly publication repositories and
academic information retrieval systems. In this article,
we propose innovative and economic methods of gen-
erating knowledge-based structural metadata (structural
keywords) using a combination of natural language
processing-based machine-learning techniques and
human intelligence. By allowing low-barrier participation
through a social media system, scholars (both as
authors and users) can participate in the metadata
editing and enhancing process and benefit from more
accurate and effective information retrieval. Our experi-
mental web system ScholarWiki uses machine learning
techniques, which automatically produce increasingly
refined metadata by learning from the structural meta-
data contributed by scholars. The cumulated structural
metadata add intelligence and automatically enhance
and update recursively the quality of metadata, wiki
pages, and the machine-learning model.

Structural Keywords
<Research Question>Metadata Generation</Research
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<Methodology>Human Intelligence, Artificial Intelli-

gence, Natural Language Processing (NLP)</Methodology>
<Dataset>Scholar Publication</Dataset>
<Evaluation>User Evaluation, Cross-Folder Validation</

Evaluation>

Introduction

The ability to discover, integrate, and reuse relevant
scholarly output from prior studies is critical for innovative

research (Shotton, Portwin, Klyne, & Miles, 2009). This
ability is largely facilitated by the metadata representing
such scholarly output. Metadata have traditionally centered
on descriptive representation by title, author, publisher,
subject keywords, and other attributes of scholarly output
(e.g., the Dublin Core Metadata Element Set). Descriptive
metadata, however, are rapidly becoming increasingly
inadequate as the complexity and volume of scholarly
output grow. Database vendors have developed innovative
mechanisms to address these new challenges. Examples
include the Association for Computing Machinery (ACM)
Digital Library’s (http://dl.acm.org/) reference-linking capa-
bilities and biomedical research journals that provide struc-
tured abstracts to facilitate search and browsing. These
developments, though sporadic and varying in degree of
sophistication, have enhanced the retrieval and use of schol-
arly publications by providing nontraditional descriptive
metadata.

The goal of this article is to describe economical methods
of creating novel structural (domain-knowledge-based)
keywords, a kind of structural metadata, through the inte-
gration of human and artificial intelligence. An innovative
type of structural metadata, the structural keyword, is a
machine-readable device developed to facilitate knowledge
retrieval.

Structural metadata (Liu & Qin, in press) can be defined
as a framework that scientific papers use to convey an argu-
ment or report research results to their “persuasive commu-
nity” (Allen, Qin, & Lancaster, 1994). For instance, the
section headings in a research paper are typical structural
elements that can be used as structural metadata. From a
rhetoric point of view, scientists must persuade their com-
munity through their papers that their research methods are
sound and that their results are significant, valid, and reli-
able. It is agreeable among researchers that a research paper
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should clearly describe the research question, methods, and
data/materials used to study the problem as well as the
results and subsequent discussion. Although these are
common structural elements in scientific writing, variations
exist between individuals and between disciplines. Such
structural elements not only form a persuasive framework
for authors to make their argument but also present poten-
tially useful metadata for in-depth representations of
research papers. This means that although some structural
elements are common across communities, others are spe-
cific to individual fields. For example, “research question” is
one of the structural concepts used in almost all scientific
publications regardless of research domain, but among the
structural concepts typically appearing in an information
retrieval publication (“research question,” “methodology”
[sometimes called an “algorithm”], “data set,” and “evalua-
tion”), the concept “evaluation” may not be a common
structural component in other domains’ publications.
Although some publications in the information retrieval
domain may not strictly follow this rhetorical structure,
the fundamental domain structural keywords can assist
users in analyzing the microlevel semantics within the
paper and identifying relations among different papers.
Structural metadata exist not only in the section headings
but also the text body of a paper and other descriptive meta-
data. For this article, we enhanced classical keyword meta-
data to structural keywords by using human and artificial
intelligence.

As an example, one structural keyword of this article
noted in the “structural keywords” synopsis (i.e.,
“<Research Question> Metadata Generation</Research
Question>”) illustrates the research question, and
“<Dataset>Scholar Publication</Dataset>” describes the
data set. Indexing structural keywords is useful for
knowledge-based retrieval systems. For example, our proto-
type knowledge-retrieval engine (Guo, Chinchankar, & Liu,
2012), as Figure 1 shows, can support knowledge-based
queries such as “Methodology: Support Vector Machine;
Dataset: TREC QA; Evaluation: NDCG” for the “informa-
tion retrieval” domain. Furthermore, as Figure 1 shows, the
system can recommend structural keywords for natural lan-
guage queries and provide knowledge feedback (on the right
side) to help users better understand retrieved results or to
update their initial query from a knowledge perspective.
These innovative features are based on the structural
keyword implementation.

However, structural keyword generation for large
numbers of publications is a demanding task. Although the
cost of employing domain experts is unacceptably high,
fully automatic machine learning classifier and natural lan-
guage processing (NLP) approaches (artificial intelligence)
may suffer from low accuracy and training-data sparseness
problems. It is now vital to find ways to effectively generate
structural keywords for large numbers of publications at a
low cost. In this research, we propose a hybrid method of
integrating human and artificial intelligence. By allowing
low-barrier participation through an experimental social

media system, ScholarWiki users (both as authors and users)
can participate in the knowledge and metadata editing and
enhancing process, which automatically “triggers” the
evolution of the machine learning model used to enhance
metadata quality. Unlike other social media systems,
ScholarWiki allows users to make nonlinear contributions to
the metadata repository, which means that creating/editng
one publication’s metadata can trigger the comprehensive
improvement of all other publications’ metadata. By using
the information retrieval domain as a case study, our experi-
ment shows that artificial intelligence plus crowd-sourced
user feedback via the ScholarWiki system is effective in
creating high-quality structural keyword metadata.

In the remainder of this article, we (a) review relevant
literature and methodologies, (b) introduce the artificial and
human intelligence–based structural keyword creation
methodology, (c) describe the experiment in the information
retrieval domain using 20,799 publications and one
graduate-level information retrieval class, (d) evaluate our
work by comparing different approaches and features, and
(e) discuss the contributions and limitations of our work.

Previous Research

Metadata representation facilitates finding, identifying,
selecting, and obtaining information objects (International
Federation of Library Associations, 1998). In its short
history, metadata research has split into two camps with
differing perspectives and paradigms: the description para-
digm in library and information science and the processabil-
ity and executability paradigm rooted in computer science
(Zeng & Qin, 2008). Research on metadata representation
and generation during the past few decades has drawn tech-
niques and methods from a wide variety of research fields,
including NLP, machine learning, classification, and ontol-
ogy. This study focuses on metadata representation and
generation. In this section, we review these two lines of
research.

Structural Metadata Representation

The proliferation of cyberinfrastructure-enabled research
environments calls for more powerful and effective metadata
representation methods to address information discovery
challenges. The rapid growth of scholarly publications
has highlighted the need for structural metadata, an emerg-
ing approach to structuring publication information. The
basic assumption is that certain types of domain-specific
publications adhere to a predictable knowledge structure.
Understanding this structure may promote further advances
for managing NLP or information retrieval applications
(Y. Guo et al., 2010; Lin, Karakos, Demner-Fushman, &
Khudanpur, 2006). More recently, Evans and Foster (2011)
noted the importance of metaknowledge by integrating
structural information across different publications in terms
of explicit knowledge, implicit knowledge (i.e., implicit
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preferences, heuristics, and assumptions), and knowledge
context (i.e., understanding the collaboration network). The
ability to explicitly identify structural concepts in unstruc-
tured text can play an important role in applications such as
document summarization (Teufel & Moens, 2002), informa-
tion retrieval (Tbahriti, Chichester, Lisacek, & Ruch, 2006),
information extraction (Mizuta, Korhonen, Mullen, &
Collier, 2006), and question answering.

To date, most efforts made to structure knowledge within
publications have focused on the medical domain. The Ad
Hoc Working Group for Critical Appraisal of the Medical
Literature (1987) recommended structural abstracts, as an
example, to help individuals assess the content of a publica-
tion and to facilitate machine indexing and retrieval.

Hirohata, Okazaki, Ananiadou, and Ishizuka (2008) and Lin
et al. (2006) automated the process of classifying the sen-
tences of medical publication abstracts as “objectives,”
“methods,” “results,” and “conclusions” by using supervised
learning and Markov chain analysis. Their classification
schema was based on section names found in some scientific
abstracts. Similarly, argumentative zoning, an alternative
structural schema introduced by Teufel and Moens (2002),
can be applied to the abstract or full text of a scientific
publication. Following the work of both Teufel and Moens
and Mizuta et al. (2006), the following seven categories were
adopted by Y. Guo et al. (2010) to explore the structural
knowledge within an abstract: background, objective,
method, result, conclusion, related work, and future work.

FIG. 1. Knowledge retrieval system (prototype). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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More recently, Liakata, Teufel, Siddharthan, and Batchelor
(2010) introduced a more complex, concept-driven, and
ontology-motivated knowledge schema, which employed
Core Scientific Concepts, a three-layer annotation scheme
treating scientific papers as humanly readable representations
of scientific investigations. Eleven concepts are used in the
first layer (e.g., “hypothesis,” “motivation,” and “method”).
The second layer contains properties of categories (e.g.,
“advantage,” “disadvantage,” and “method”). The third layer
involves coreference identification between the instances of
each category. So far, this is one of the most fine-grained and
complex structural schemas.

Y. Guo et al. (2010) compared three structural schemas in
publication abstracts—section names, argumentative zones,
and core scientific concepts (Layer 1)—and found signifi-
cant relationships and overlap between these three schemas.
Section names, actually designed for abstracts, are based on
the similar information structure in scientific abstracts (e.g.,
many abstracts provide the general background and goal of
the research, methods used to achieve the goal, the results
obtained, or the main conclusions. Not surprisingly, section
names, with only four fundamental concepts (objective,
method, result, and conclusion), have even sentence distri-
bution within publication abstracts. The sentence distribu-
tions of the other two, more complex schemas are skewed,
which indicates that structural concepts in the complex
schema are missing in a noteworthy percentage of publica-
tion abstracts (for instance, “research hypothesis” is not
always addressed in the publication abstracts).

From the retrieval point of view, structural knowledge
plays an important role in connecting between document-
level domain knowledge and the explicit, implicit, or inferred
knowledge within user information needs, making it the pre-
requisite of knowledge retrieval. Lin and Demner-Fushman
(2006) proposed a knowledge retrieval framework for the
medical domain using knowledge extraction and retrieval
methods rooted in the Unified Medical Language System and
Medical Subject Headings. Their results showed that knowl-
edge retrieval leveraging structural knowledge is promising
when compared with statistical retrieval models in terms of
bag-of-word indexing. Hersh et al. (2004) used a “funneling”
model to describe the information process for an ideal infor-
mation retrieval task as: all literature → possibly relevant
literature → definitely relevant literature → structured knowl-
edge. However, despite its intuitive appeal, the hypothesis that
knowledge retrieval should outperform sophisticated bag-of-
word-based retrieval models remains unverified empirically,
except in some well-defined domains (e.g., the medical
domain), because of the unavailability and sparseness of the
knowledge bases. This research develops a framework for
automatically generating structural knowledge, which is criti-
cal for constructing domain knowledge bases.

Metadata Generation

As structural metadata and some extensions of descrip-
tive metadata are becoming increasingly complex, a

remaining problem warrants attention: Who should be
responsible for creating and enhancing metadata?

Obviously, for most existing library or document reposi-
tory systems, professional metadata creators or domain
experts (e.g., catalogers and indexers) are the ideal candi-
dates (Milstead & Feldman 1999) to create metadata
because they are familiar with the systems and terminolo-
gies. However, this approach is costly and may be limited in
availability. It is difficult to apply this approach to large
amounts of data across different domains.

Meanwhile, other research projects (e.g., Greenberg,
Pattuelli, Parsia, & Robertson, 2001) have found that
authors can sometimes provide higher quality metadata for
web resources; this approach is used by most digital librar-
ies. However, many authors are only willing to provide
relatively simple descriptive and reference metadata. Creat-
ing more complex metadata (e.g., reasons for citation or
structural abstracts) is a demanding job and is not supported
comprehensively by most general-domain publications. In
the medical domain, some studies have found that explicit
structural abstracts are not entirely reliable, and although
many core clinical journals require structured abstracts,
there is a great deal of variation in the actual headings (e.g.,
Demner-Fushman & Lin, 2007).

User contributions (i.e., massive numbers of Internet-
based volunteers), such as social tagging, are another
important resource for metadata generation. According to
Bücheler and Sieg (2011), the web offers innovative oppor-
tunities for social interaction, collaboration, and collective
intelligence. Some popular tagging systems, such as Flickr
for image tagging and Delicious for web resource tagging,
already have proven to be important and useful metadata-
generation sources. Studies on social tagging have found
that user-generated metadata tends to be sparse and noisy
(e.g., Markines et al., 2009), and this is why social tagging
cannot be used to directly generate scholarly metadata.

For the aformentioned reasons, user- (or author-)
generated and professional- (or expert-)generated metadata
can hardly cope with the need for complex structural meta-
data generation at a large scale across different domains.
Accordingly, the machine-generated approach, an economi-
cal and effective alternative, has become popular during the
past few years.Awide variety of techniques have been used to
process digital texts to generate metadata records. Diekema
and Chen (2005) conducted an experiment using NLP and
machine learning to assign educational standards to digital
content and achieved results comparable to human-created
metadata records. Other techniques, such as associative net-
works (Rodriguez, Bollen, & Van de Sompel, 2009), fuzzy
inference (Sah & Wade, 2011), and semiautomatic metadata
extraction (Tonkin & Muller, 2008), also have been applied to
automatically or semiautomatically creating metadata.

In the medical domain, the ability to accurately model the
contextual structure of abstracts is used for MEDLINE pub-
lications. McKnight and Srinivasan (2003), for instance,
examined the task of categorizing sentences in unstructured
medical abstracts using supervised discriminative machine
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learning techniques. Lin et al. (2006) used a hidden Markov
model approach to classify the content of abstracts. Y. Guo
et al. (2010) compared the automatic machine learning
performance of three different structural schemas for
medical abstracts. Teufel and Moens (2002) and Teufel,
Siddharthan, and Batchelor (2009) designed a method for
automatically identifying the argumentative zones for a
publication text.

Most implementations for automatic metadata generation
are based on machine learning, which requires a consider-
able amount of training data. There are two major limita-
tions of this approach. First, although high-quality training
structural metadata are available for some domains (e.g., the
medical domain), for other domains they are rare. Second, as
mentioned earlier, the distribution of structural elements in
training texts is quite skewed, and there are only a few
training instances for some structural concepts. The number
of training instances, however, is critical for machine learn-
ing performance (Hirohata et al., 2008).

In this study, to solve this problem, we used a collabora-
tive approach for domain experts and machine and end users
via the ScholarWiki system. This approach has proven
successful in other fields, for instance, Höök, Rudström,
and Waern (1997) used human–machine collaboration to
achieve filtered information for hypermedia. Handschuh,
Staab, and Ciravegna (2002) implemented semiautomatic
annotation of web pages by using S-CREAM, an annotation
and authoring framework suited for easy creation of rela-
tional metadata.

Because we used human intelligence in this research for
scholarly metadata creation, we also propose incentives and
an incentive-driven system to help users accomplish
this task. This has been identified as an important factor for
human-centric systems (Siorpaes & Simperl, 2010).

Structural Metadata Generation

Unlike most existing structural abstract research in the
medical domain, we extracted domain-specific structural
keywords in our research, based on two assumptions. First,
in most existing metadata repositories, author-assigned pub-
lication keywords are available as a kind of high-quality
descriptive metadata, which can enhance the accuracy of
structural keywords; thus, it is not necessary to identify
the boundary of keywords as done in named entity
recognition (NER) research (i.e., Begin, Inside, Outside)
tagging based machine learning. Second, as mentioned
earlier, structural keywords are important for implementing
knowledge retrieval, that is, for extracting domain knowl-
edge from the user’s natural language query (as Figure 1
shows).

For the first assumption, unfortunately, author-assigned
keywords are not always readily available or reliable in
scientific digital repositories (e.g., ACM or the SciVerse
database), but we could employ an automatic approach to
enhance the keyword quality. More detailed information can
be found in our previous study (C. Guo, Zhang, & Liu, 2013).

In the rest of this section, we describe the artificial
intelligence– and human intelligence–based structural
keyword generation methods. The experiment in the infor-
mation retrieval domain is introduced later.

Artificial Intelligence Approach

To harvest comprehensive structural keyword metadata
from a large number of publications, we do not use publi-
cation full-text as a feature resource because full-text data in
most cases are missing or unavailable in scholarly reposito-
ries. The three primary sources of features for the structural
metadata classifier are the following:

• Keyword content features: the nature of the target keyword
(i.e., keyword length, keyword content, and capitalization of
the keyword).

• Title context features: the title context of the target keyword
(i.e., the keyword context token and the part of speech [POS]
in the publication title).

• Abstract context features: the abstract context of the target
keyword (i.e., the frequency, location, and context token and
the POS of the target keyword in the abstract).

A number of feature types are employed for each category,
which can be found in Table 1.

Keyword: 3D model
Title: Dense sampling and fast encoding for 3D model
retrieval using bag of visual features
Abstract: Our previous shape-based 3D model retrieval
algorithm compares 3D shapes by using thousands of
local visual features per model. A 3D model is rendered
into a set of depth images, and from each image, local
visual features are extracted by using the Scale Invariant
Feature Transform (SIFT) algorithm by Lowe. To effi-
ciently compare among large sets of local features, the
algorithm employs bag-of-features approach to integrate
the local features into a feature vector per model. The
algorithm outperformed other methods for a data set con-
taining highly articulated yet geometrically simple 3D
models. For a data set containing diverse and detailed
models, the method did only as well as other methods.
This paper proposes an improved algorithm that performs
equal or better than our previous method for both articu-
lated and rigid but geometrically detailed models. The
proposed algorithm extracts much larger number of local
visual features by sampling each depth image densely and
randomly. To contain computational cost, the method uti-
lizes GPU for SIFT feature extraction and an efficient
randomized decision tree for encoding SIFT features into
visual words. Empirical evaluation showed that the pro-
posed method is very fast, yet significantly outperforms
our previous method for rigid and geometrically detailed
models. For the simple yet articulated models, the perfor-
mance was virtually unchanged. Categories and Subject
Descriptors
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Keyword content feature types, as Table 1 shows, are a
feature set characterizing keywords in a context. For
instance, CAP characterizes the capitalization nature of the
target keyword for a publication, and its value could be one
of the following: “All Lower Case” (abc), “All Capitalized”
(ABC), “First Char Capitalized” (Abc), or “Not All Lower”
(aBc). Content_Of_Keyword is the binary vector typed
feature, where each dimension tells whether the correspond-
ing token (in the training vocabulary) appears. To make the
content feature more reliable, tokens that occur rarely in
the training set are removed. We assume that the length of
the keyword is important for classification, and multiple
feature types are used to predict the class label (i.e., charac-
ter length or token length). In the experiment, some key-
words contain digits (i.e., “20 newsgroup” or “TREC
2002”), which could be an important clue for some keyword
class labels such as “data set.” As a result, Contain_Digit is
used as a Boolean feature type.

One of the most important contributions of the rhetorical
structural metadata is to disambiguate the keyword’s role in

the publication. For instance, the keyword “clustering algo-
rithm” may be the “research question” or “methodology” for
different publications. In this research, we use title context
and abstract context features to resolve this problem. Based
on NER research experience, a text window [−n, +n] (left n
words and right n words of the target keyword) is used to
extract POS, unigram, and bigram features for both title
context and abstract context. Instead of using all possible
features, we used a cutoff to remove features that occur less
than five times, which is effective to remove those noisy
features. Location is another important feature type for rhe-
torical classification, which has been proven as an important
feature for argumentative zones research (Merity, Murphy,
& Curran, 2009). The numeric title position is used for
the Location_In_Title feature; for abstracts, the sentence
location (Location_In_Abstract) and keyword position in
sentence features (Keyword_Position_In_Sentence_Of_
Abstract) are used. For example, the keyword might be
observed in the second sentence of the abstract, and it might
occur at the beginning of this sentence. If a keyword appears

TABLE 1. Feature list for each category.

Category Feature Description or example

Keyword Content Text Content of the keyword, stemmed, case insensitive, stop words removed
• The feature value is “3d model.”

Content_Of_Keyword A vector of all the tokens in the keyword.
• The feature value = [“3d”, “model”].

CAP Whether the keyword is capitalized
• The feature value is “Not All Lower.”

Contain_Digit If there are digits in the keyword
• The feature value is true.

Character_Length_Of_
Keyword

Character length of the target keyword.
• The feature value is 2.

Token_Length_Of_
Keyword

No. of tokens in the keyword.
• The feature value is 2.

Category_Length_Of_
Keyword

No. of tokens in the keyword; if the length is more than four, we use four to represent its category length
• The feature value is 2.

Title Context Exist_In_Title Whether keyword exists in title (stemmed, case insensitive, stop words removed)
• The feature value is true.

Location_In_Title The position the keyword appears in title (not exist, first 3 words, middle, last 3 words)
• The feature value is “middle,” meaning keyword exists in the middle of the title.

Title_Text_POS Unigram and its part of speech in title (in a text window)
• The feature values are “for:IN” (−1) and “retriev:NN” (+1).

Title_Unigram Unigram of keyword in title (in a text window) . • The feature values are “for” (−1) and “retriev” (+1).
Title_Bigram Bigram of keyword in title (in a text window) .

• The feature values are “encod for” (−2) and “retriev use” (+2).
Abstract Context Location_In_Abstract Which sentence the keyword appears in abstract(first, middle, or last sentence)

• The feature value is “first sentence.”
Keyword_Position_In_
Sentence_Of_Abstract

Keyword’s position in the sentence (beginning, middle, or end)
• The feature value is “middle.”

Abstract_Freq How many times a keyword appears in the abstract
• The feature value is 2.

Abstract_Text_POS Unigram and its part of speech in abstract (in a text window)
• The feature values are “base:VB” (−1) and “retriev:NN” (+1).

Abstract_Unigram Unigram of keyword in abstract (in a text window)
• The feature values are “base” (−1) and “retriev” (+1).

Abstract_Bigram Bigram of keyword in abstract (in a text window)
• The feature values are “shape base” (−2) and “retriev algorithm” (+2).
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more than once in the abstract, its first instance is used for
feature extraction, and the frequency itself also is a feature
(Abstract_Freq).

After comparing different machine learning algorithms,
we selected for this study “decision tree,” an inductive learn-
ing algorithm based on training instances. Decision tree is a
simple and effective classification algorithm popular in data
mining. It focuses on deducing classification rules repre-
sented by a decision tree from a group of random and irregu-
lar samples, and we chose the C4.5 implementation of the
decision tree algorithm for this study. C4.5, presented by
Quinlan (1993), is a successor of ID3, distinguished from
the latter by the fact that it selects the attribute with the
maximum gain ratio as the splitting attribute (Han, Kamber,
& Pei, 2006).

Human Intelligence Approach

Although machine learning and NLP can cope with
complex structural metadata generation on a large scale, a
fully automated approach tends to suffer from modest pre-
cision (discussed later) and often results in noisy or irrel-
evant results and metadata pollution. In addition, the cost of
good-quality training data is high. To solve this problem, we
designed the ScholarWiki system.1 An example publication
wiki page is shown in Figure 2. As the example shows, the
traditional descriptive metadata—title, author, abstract, cita-
tion, and journal information—are presented on the wiki
page, and structural keywords, as inferred by a machine
learning algorithm, are presented in the top InfoBox.

1http://scholarwiki.indiana.edu/wiki/index.php?title=Main_Page

FIG. 2. An example publication ScholarWiki page. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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By using this system, the domain expert-defined publica-
tion domain schema (in RDF format) can be translated
automatically into the ScholarWiki system as a wiki tem-
plate. For instance, Figure 4 shows how the information
retrieval domain RDF is automatically converted into a
ScholarWikiInfoBox template.

In the next step, each publication in the target domain is
automatically converted into the ScholarWiki style along
with the machine-inferred structural keyword information.
This progress is implemented in three stages. Initially
at the expert stage, domain experts provide sample struc-
tural keywords via an easy coding system to randomly
selected publications in this domain. In the second stage,
the system stage, a machine learning model with the
features described earlier deploys to learn from the domain
experts’ coding results. The system then infers the
structural keywords for all the other publications in this
domain and automatically generate wiki pages. All inferred
structural metadata are presented in the InfoBox on the
top of each publication wiki page. Figure 3 shows a wiki
page example generated automatically by the inference
algorithm (The circled part is the structural metadata.)
Finally, at the user stage, users (students, instructors, or
scholars) can access and edit the wiki pages to enhance or
tweak the metadata presented on the pages if they are
not satisfied with the structural keywords or other metadata
presented on the wiki page. To facilitate user editing,
the ScholarWiki system generates comments on each

wiki page. As the following example shows, the system
chooses candidate keywords from the publication title
or abstract and presents those keywords in the
wiki page comments to help users edit the target wiki
page.

If you need to change the content of the InfoBox, the following
candidate keywords may be helpful: [[language model]],
[[ranking model]], [[system evaluation]]

Collaboration Approach

In this metadata-creation method, the user is a central
metadata editor instead of just a viewer. We initialize
the metadata-generation process by leveraging domain-
expert structural ontology definitions and examples of
publication-metadata creation. Then, machine-learning
algorithms assume control by “understanding” the experts’
judgments and automatically generating all the structural
metadata for publications in this target domain. Note that
even though machines can automatically generate metadata
for all publications, the accuracy at this point may not be
high given the small amount of training data. In this col-
laborative process, user editing contributes to (a) improve-
ment in metadata quality by providing judgments on
the appropriateness and accuracy of the machine-generated
resources (e.g., users can correct errors generated by the
machine learning algorithm in the InfoBox) and (b)
improvement in machine learning accuracy by adding
more training instances. As Figure 5 shows, editing (even
if only a small number of publications) triggers (machine-
learning triggers) provide comprehensive improvement
of structural metadata in the repository database in the
target domain. The enhanced repository database can
be used to update the quality of all wiki pages in the
ScholarWiki system and is thus a nonlinear process, which
means that if the user creates or edits his or her publica-
tion’s metadata, this can trigger the comprehensive
improvement of all other publications’ metadata. The
quality of the metadata, machine-learning model, and
wiki pages can be enhanced recursively, which differs
from most existing social tagging systems (i.e., Flickr and
Delicious).

FIG. 3. Domain ontology and ScholarWikiInfoBox template. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIG. 4. Two-step “trigger” metadata enhancement. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Incentives

Incentivizing is another essential problem for wiki-
oriented social media systems. During the past few years,
Wikipedia has successfully attracted millions of users while
many similar systems have failed to do so even though they
employed similar wiki interfaces. To avoid this kind of
problem, the ScholarWiki system prioritizes metadata-
presentation rather than data-collection functionality;
namely, we want to credit users first, by providing useful
metadata and information before collecting data from them.
To achieve this goal, we put a question-and-answer (QA)
link and eContext metadata (Liu, 2013) on each publication
wiki page as referential metadata to accompany the high-
quality descriptive metadata. The QA link directs users to a
page where they can ask questions (Liu & Jia, 2013) and
browse existing questions and answers related to the publi-
cation. eContext metadata allow users to get contextual
information (e.g., presentation slides or source codes) for
the target publication. In addition, to facilitate user brows-
ing, the ScholarWiki system automatically generates a list of
author wiki and keyword wiki pages for quick access to
resources pertaining to an author or a keyword. Each author
wiki page presents the topics and publications that the
author has written; the topics of these publications are auto-
matically ranked by citation counts. Each keyword wiki
page indexes the most notable authors, the most cited pub-
lications, and keywords related to these publications. These

features offer a better user experience while providing
incentives to use our system (Liu & Qin, in press).

Experiment

To test and compare different approaches such as super-
vised learning, semisupervised learning, human knowledge-
based collaborative learning, and structural keyword
generation, we designed an experiment for information
retrieval publications. As the collaborative learning
approach requires user participation, we invited students
from a graduate-level class on information retrieval as users
for this experiment.

Data set

In this experiment, 20,799 publications from 1965 to
2010 in the information retrieval domain were used. All
the publications came from the ACM Digital Library.
We first used purposive sampling to identify 15 core confer-
ence proceedings and journals in the information retrieval
domain (e.g., Special Interest Group on Information
Retrieval [SIGIR], Transactions on Information Systems
[TOIS], or Conference on Information and Knowledge
Management [CIKM]). Publications in these proceedings
and journals were used as the seed publications. Cited pub-
lications in these were then investigated to expand the

FIG. 5. Knowledge retrieval system prototype. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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corpus. If a paper was cited more than twice by these seed
publications, we put them into the test collection. The test
collection included 50,617 publications.

In the metadata repository, some publications do not have
keyword metadata. To solve this problem, we first created a
domain popular keyword (frequency >3) list from the exist-
ing keyword collection (for the test collection). Then, we
searched each keyword from the paper title and abstract by
using greedy matching. (All the titles and abstracts came
from ACM Digital Library.) For example, if “music infor-
mation retrieval” was in the title, we would not use the
keyword information retrieval. The matched keywords were
used as “pseudo keyword” metadata for the target publica-
tion if author-assigned keyword metadata were unavailable.

Artificial Intelligence (Machine Learning)
Approach Result

Two graduate students with information retrieval back-
grounds were hired to annotate keywords for 150 randomly
sampled publications from SIGIR and CIKM conference
proceedings. Each coder independently annotated 75 papers.
The annotated metadata were used for the initial machine
learning model training and for evaluation purposes. Before
the coders started working on those publications, we trained
them for 3 weeks in face-to-face meetings and with coding
practice. After training, the coders achieved an 80% agree-
ment rate. The coding process lasted for 4 weeks. If the
coders could not decide which category a keyword
belonged to in a paper context, they could annotate this
keyword as “unknown.” If a coder did not have confidence in
the target publication (e.g., she did not understand the
essence of the paper), she could report and ignore it.
Finally, coders annotated 572 paper–keyword pairs for 121
distinct publications. The keyword categories were not
evenly distributed; there were 170 research question key-
words, 157 methodologies, 62 data set, 18 evaluations, and
165 unknowns.

Based on the feature set presented earlier, we used C4.5
to train the learning model. The text window size of both
title and abstract was 3, which means we could use the left
3 words and right 3 words for POS, unigram, and bigram
feature extraction in both title and abstract. Table 2
compares 10-fold cross-validation performance of the
three basic feature sets: Keyword, Keyword + Title, and
Keyword + Title + Abstract.

Given the small amount of training instances, we also
implemented a semisupervised learning model with the
same feature set and learning algorithm. We selected the
top-1% keyword–paper pairs with the highest probability
scores for each category in the 15 core journals and confer-
ence proceedings. We also used quality control to filter out
some low-quality metadata (e.g., we filtered out papers with
title length of <50 characters, paper abstract length of <300
characters, and number of keywords ([for the paper] of <5).
Finally, 626 keyword–publication pairs, among which there
were 200 research question keywords, 200 methodologies,
100 data set, 26 evaluations, and 100 unknowns, were used
to expand the original training data set. The performance of
semisupervised learning is reported in Table 3.

The detailed result analysis, significance test, and com-
parison are reported later.

Collaborative Approach Result

Next, we designed and implemented the ScholarWiki
system. The supervised learning approach was used to infer
structural keyword labels for 20,799 publications in the
information retrieval domain. The system automatically
generated a wiki page for each publication, with structural
keywords presented in the InfoBox section as demonstrated
in Figure 2.

Eight graduate students in the information retrieval
course were trained to use the system and edit the wiki page,
especially for the InfoBox section. For more than 6 weeks,
students were asked to use the ScholarWiki system for

TABLE 2. Ten-fold cross-validation results on different feature categories (supervised learning).

Feature types Concept Precision Recall F1

Keyword-based features Research question 0.549 0.757 0.637
Methodology 0.727 0.357 0.479
Data set 0.925 0.742 0.824
Evaluation 0.800 0.444 0.571
Weighted average 0.691 0.585 0.603

Keyword + Title-based
features

Research question 0.553 0.740 0.633
Methodology 0.738 0.376 0.498
Data set 0.925 0.742 0.824
Evaluation 0.800 0.444 0.571
Weighted average 0.698 0.584 0.608

Keyword + Title +
Abstract-based features

Research question 0.533 0.805 0.642
Methodology 0.742 0.293 0.420
Data set 0.942 0.742 0.831
Evaluation 0.818 0.500 0.621
Weighted average 0.692 0.581 0.584
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class-reading downloads, group-assignment implementa-
tions, class-presentation preparation, and final-project
resource retrieval. Students were encouraged to edit the
wiki pages if they found mistakes or wanted to recommend
additional information in the structural keyword part.
The class instructor also could edit the wiki pages, if
necessary.

The system triggers, at the back end, automatically
extracted new training instances from the users’ editing
behavior. The machine-learning model was enhanced peri-
odically based on the new instances. At the end of the semes-
ter, the updated machine learning model was used for this
article. Its performance is shown in Table 4.

For the entire semester, students and the instructor edited
205 keyword–publication pairs with 92 research question
keywords, 67 methodologies, 27 data set, 17 evaluations,
and 2 unknowns belonging to 57 distinct publications. Note
that the number of user-contributed training instances for a
collaborative approach is much smaller than those for the

semisupervised learning approach. Similar to other wiki
systems, the wiki page crowd-sourced approach renders
editing a collaborative progress wherein multiple people can
work on the same wiki page.

Analysis

In this experiment, we compared three different
approaches to structural keyword metadata-creation:
supervised learning, semisupervised learning, and (user +
machine) collaborative learning with human intelligence. To
compare their performance, the F1 scores of these different
methods with different feature sets are presented in Table 5.
We also implemented a significance test (t test) using the
supervised learning approach as the baseline algorithm. Note
that even though the training instances are different for these
approaches, the testing set of these methods—the domain
experts’ coding results—is the same. Specifically, while con-
ducting 10-fold cross-validation, for supervised learning, we

TABLE 3. Ten-fold cross-validation results on different feature categories (semisupervised learning).

Feature types Concept Precision Recall F1

Keyword-based features Research question 0.580 0.769 0.662
Methodology 0.724 0.401 0.516
Data set 0.864 0.773 0.816
Evaluation 0.800 0.444 0.571
Weighted average 0.690 0.615 0.627

Keyword + Title-based
features

Research question 0.588 0.769 0.667
Methodology 0.733 0.420 0.534
Data set 0.864 0.773 0.816
Evaluation 0.800 0.444 0.571
Weighted average 0.697 0.622 0.636

Keyword + Title +
Abstract-based features

Research question 0.590 0.757 0.663
Methodology 0.723 0.433 0.542
Data set 0.879 0.773 0.823
Evaluation 0.900 0.500 0.643
Weighted average 0.701 0.624 0.642

TABLE 4. Ten-fold cross-validation results on different feature categories (collaborative approach).

Feature types Concept Precision Recall F1

Keyword-based features Research question 0.575 0.793 0.667
Methodology 0.711 0.408 0.518
Data set 0.963 0.788 0.867
Evaluation 0.833 0.556 0.667
Weighted average 0.701 0.636 0.643

Keyword + Title-based
features

Research question 0.579 0.805 0.673
Methodology 0.733 0.401 0.519
Data set 0.929 0.788 0.852
Evaluation 0.833 0.556 0.667
Weighted average 0.705 0.639 0.644

Keyword + Title +
Abstract-based features

Research question 0.576 0.740 0.648
Methodology 0.639 0.439 0.521
Data set 0.943 0.758 0.840
Evaluation 0.800 0.444 0.571
Weighted average 0.668 0.616 0.627
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divided the domain experts’ coding results into 10 parts and
took nine parts as training instances and one part as testing
instances. For semisupervised learning, the domain experts’
coding results and the instances inferred from the supervised
learning were divided into 10 parts, and we took nine parts of
them as training instances and one part of the coding results
as testing instances. For collaborative learning, the training
and testing instances were obtained in a similar way as
those for semisupervised learning. In this experiment, we
assume that the coding results in this research are reliable.
For each row, the best performance approach is marked
in bold.

Because it is difficult to estimate if the experiment results
follow a normal distribution, we also used the Wilcoxon
signed-rank test, a nonparametric statistical-hypothesis test,
to validate the hypothesis. Results show that the collabora-
tive approach is significantly better than is the supervised
approach for research question (for all kinds of features),
methodology (for all kinds of features), and evaluation
(Keyword + Title + Abstract-based features).

We summarize our findings thus:

• Overall, the best-performing result was the collaborative
learning approach with Keyword + Title features. Similarly,
collaborative learning achieved the best performance with
Keyword features.

• Both semisupervised learning and collaborative learning
effectively (significantly) improved the accuracy of the super-
vised learning method. Overall, the collaborative approach
outperformed the semi-learning approach. Given the short
period (6 weeks) of students’ participation, it is difficult to
assume the trade-off between the amount of human time spent
and the accuracy enhancement, and this should be explored in
future studies.

• For feature set validation, although the title context feature
effectively optimized the performance for all learning
approaches, the abstract context features could not offer stable
improvement for collaborative learning approaches. However,
as abstract context features significantly enhanced supervised

learning except for the methodology item, and semisuper-
vised learning performance except for the research question
item.

• Data set items were the most accurately predicted, and col-
laborative learning was effective at further enhancing perfor-
mance. In comparison, methodology items presented the most
difficult task, and semisupervised learning was the most effec-
tive method.

In our initial hypothesis, both title and abstract context
features were thought to be important for enhancing
machine-learning performance. In the experiment, however,
we found that abstract features only help the semisupervised
learning approach. The reason for this might be the number
of training instances. Given the small number of training
instances, when we extract a [−3, +3] text window for
unigram, POS, and bigram features, abstract context fea-
tures cannot make a great contribution to the learning per-
formance due to their large variation. Semisupervised
learning, on the contrary, significantly expanded the training
set with 626 new instances. This might be the main reason
why abstract context features work well for this approach,
especially for method items, which highly depend on the
context features.

Compared with the semisupervised learning approach,
the collaborative learning approach, with only 205 addi-
tional training instances, did not have a chance to improve
the abstract context features. However, the Keyword + Title
context features for this approach achieved the best perfor-
mance in this experiment, which proves that the quality of
human intelligence-generated structural keyword instances
is much higher than is that of the machine-generated
instances. On the other hand, for the data set and evaluation
labels, coders annotated relatively few training instances (66
and 18, respectively). Small numbers of training instances
negatively affect the performance of semisupervised learn-
ing, especially for the keyword content-based features, in
which a machine may straightforwardly memorize the

TABLE 5. F measure comparison for supervised learning, semisupervised learning, and collaborative learning (with significance test using supervised
learning as baseline).

F1 compare Concept Supervised Semisupervised Collaborative

Keyword-based features Research question 0.637 0.662 0.667***
Methodology 0.479 0.516** 0.518**
Data set 0.824 0.816 0.867*
Evaluation 0.571 0.571 0.667*

Keyword + Title-based
features

Research question 0.633 0.667 0.673***
Methodology 0.498 0.534** 0.519**
Data set 0.824 0.816 0.852*
Evaluation 0.571 0.571 0.667*

Keyword + Title +
Abstract-based features

Research question 0.642 0.663** 0.648**
Methodology 0.420 0.542*** 0.521**
Data set 0.831 0.823 0.840
Evaluation 0.621 0.662** 0.571**

*p < .01; **p < .005; ***p < .001.
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nature of those keywords (e.g., the length or number of
keyword tokens). A human intelligence–based collaborative
learning approach successfully solves this problem because
user-contributed metadata via ScholarWiki system are not
necessarily restricted or related to the initial machine learn-
ing results. This is probably why the accuracy for the data
set and evaluation labels is significantly higher for the
collaborative learning approach.

Finally, we found that the keyword-labeling method does
not perform as well as others. There may be two reasons for
this. First, coders and ScholarWiki system users may occa-
sionally have confusion between research question and
methodology for some publications. For example, while
some students may have annotated “language model” as the
research question (for a paper), others may have tagged it as
“methodology.” Second, research question and methodology
context features sometimes may be confusing. For example,
research question can appear at the beginning of a title, but
authors sometimes may start the title with methodology
keywords. To solve this problem in the future, we will use a
more sophisticated feature set (e.g., sentence tense, parsing
tree, or semantic role labeling features) to better disambigu-
ate research question and methodology keywords in a rich
context. Another possibility is to explore full-text features
such as section names, section numbers, or keyword-
occurrence distribution, even though we deliberately
avoided the use of full text in this study because of access
difficulty. For example, research question keywords fre-
quently appear in the first section of the article whereas
methodology-related keywords usually occur in the third or
fourth section of the article.

Structural Keyword Use Cases

In this section, we provide a couple of use cases of
structural keywords, which demonstrate the usefulness of
this innovative structural metadata.

Knowledge-Based Information Retrieval

The success of several knowledge-retrieval experiments
in some domains (e.g., Lin & Demner-Fushman, 2006)
proved empirically that knowledge retrieval, if implemented
in the restricted domain, could yield performance gains over
classical bag-of-word-based retrieval systems. The key to
their success is the availability of codified domain knowl-
edge accumulated in years. However, this knowledge base is
rarely available in other domains. Structural keyword meta-
data along with collaborative learning method we propose
in this article enable the implementation of a prototype
knowledge-retrieval system to serve users’ knowledge-
oriented information needs. The system could benefit users
by providing structure-level access to scientific papers and
automatically inferring structural knowledge from their
natural language queries by leveraging knowledge recom-
mendation and knowledge feedback (as Figure 1 shows).

Similarly, users also can provide explicit structural queries
by using the interface provided in Figure 5.2

Unlike the traditional “bag-of-word” assumption, each
publication in the knowledge-retrieval system is indexed
with “bag-of-knowledge” representations, and different
domain knowledge is attached to the same keyword for
different publications, which can be used to further under-
stand user information need.

Knowledge-Based Bibliometrics

Scientific publications with scientific metadata can be
represented in various types of forms for in-depth analysis.
Domain knowledge graph modeling is one of the most
important ways to describe the significant characters of a
selected domain, which is essential for domain information
visualization, information retrieval, bibliometric analysis,
and scientific literature discovery. The constructed domain
knowledge graph represents not only the important
scholar components (i.e., authors, keywords, publications,
or journals) of the domain but also the illustration of the
social network relatedness between them (i.e., publication
relatedness, coauthorship, or keyword co-occurrence
probability).

Keyword and domain knowledge provide a new oppor-
tunity to unveil the unexplored information by leveraging
classical methods in bibliometrics. Taking the information
retrieval domain as an example, a keyword relationship
graph is constructed by using keyword co-occurrence prob-
ability (of 50,617 publications) in Figure 6. Unlike the clas-
sical keyword co-occurrence graph presented by Lee, Su,
and Chan (2010) and Kajikawa and Takeda (2008), this is a
heterogeneous graph, and each vertex type (associated with
a color) represents a specific knowledge type (i.e., research
question, methodology, data set, and evaluation). If keyi as a
research question and keyj as a methodology are connected
on the graph, keyj often provides a methodological solution
for keyi in the domain.

By using this graph, we can further investigate the fol-
lowing exemplar questions for the information retrieval
domain:

• What is the most popular research question/methodology/data
set/evaluation method in the information retrieval domain?

• Which methodology can provide solution for what kind of
research question(s)?

• By using a community identification algorithm, for each com-
munity on the heterogeneous graph, what is the methodologi-
cal hub, and what is the data set/evaluation hub?

Conclusion

In this article, we proposed three different approaches
to generating a large number of domain-specific, novel

2The prototype retrieval system: http://discern.uits.iu.edu:8826/
WikiBackyard/StructuredSearch.jsp
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structural metadata—structural keywords—for scientific
publications (for 50,617 publications in the information
retrieval domain). By using artificial intelligence methods
(supervised learning and semisupervised learning), machine
learning can automatically generate structural keywords at a
low cost.

The other contribution of this article is to introduce
a user-enhanced, machine-learning scientific metadata-
creation method. By allowing low-barrier participation,
system users (instructors, scholars, and students) can partici-
pate in the knowledge and metadata editing and enhancing
process. Unlike other professional metadata-management
systems in which users need considerable expertise to con-
tribute, ScholarWiki users do not need to understand the
detailed metadata schema. Their job is to simply edit the
wiki page, especially the InfoBox section, for structural
keyword enhancement.

ScholarWiki differs from other wiki-based social media
systems in three important aspects. First, all the wiki
pages along with structural keyword metadata are initially
generated by the system via artificial intelligence. Second,
a user’s contribution to ScholarWiki is nonlinear and
evolving; in effect, editing one wiki page triggers
the comprehensive improvement of all other wiki pages.
Third, although users can learn scientific keywords and

publications from ScholarWiki, the system is simultane-
ously learning from users by “understanding” their editing
behaviors and practices. In other words, the system
trigger, at the back end, is the platform for bidirectional
metadata communication (from the system to users, and
vice versa).

Our experiment in the information retrieval domain with
a graduate-level class proves that the human + artificial
intelligence approach (collaborative learning) is an effective
and economical way to create innovative, knowledge-
based metadata. This method can be generalized to other
academic domains at low cost, if the target domain specific
structure and a small amount of the training data set are
available.
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